정보에 관한 지식기반 이론

2010년에 발표된 정보에 관한 지식기반 이론(Konwledge-Based Theory of Information, 이하 KBI)은 DIKW 모형을 개념적으로 계승하면서 한 단계 더 나이가 데이터, 정보, 지식 사이의 관계를 정교하게 규정하고 있다. KBI는 지식과 데이터가 상호작용하여 정보를 생성한다는 의미에서 상호작용적 모형(interactive model)이라고도 불린다.

KBI는 정보가 지식과 데이터로부터 생성된다는 인식에서 출발한다. 데이터는 상황에 관한 선결조건(pre-conditions) 혹은 투입값(input values)이며, 그것을 기반으로 정보가 생산된다. 정보는 주어진 상황에서 행위자가 의사결정 혹은 행동의 선택을 가능하게 하는 요소이다.  지식은 데이터로부터 정보가 생산되는 과정 혹은 프레임워크이다(아래 그림 참조).

KBI에서, 데이터는 “객체나 사건에 관한 서술 혹은 측정 결과”이다.  예컨대 “A형 부품이 17개 남아 있다” 혹은 “비가 내리고 있다”가 데이터이다. 이 데이터만으로서는 의사결정이나 행동을 선택하는데 필요한 정보가 생성될 수 없다. 거기에는 반드시 지식이 필요하다.

지식은 “구성물 사이의 관계에 대한 정당화된 진실된 믿음이다(is justified true belief of the relationship between constructs).” 이 정의를 풀어보면, 지식은 믿음의 한 유형인데, 그것은 진실이거나 진실에 접근하는 것이어야 하며,  전문가나 권위자에 의해 인정된 것이어야 한다. 다시 말해, 지식은 객관적으로 검증된 믿음, 권위있는 전문가들에 의해 인정된(혹은 합의된) 믿음이다.

그리고 지식은 구성물 사이의 관계에 대한 믿음이다. 지식의 가장 흔한 형식은 If-Then 짝이다. 예컨대 어떤 새가 백조라면, 그 새는 하얄 것이다라는 명제는 지식이다. 

정보는 지식 프레임워크(framework)를 토대로 데이터로부터 생산된 의미(meaning)이다. 의미란 어떤 경험에 부여된 해석을 말한다. 정보에 의해 선택, 판단, 혹은 불확실성의 감소가 일어난다.

아래 사례들을 보면, 지식, 데이터, 정보에 대한 KBI의 핵심적인 주장이 이해될 것이다.

(사례 1)

지식: 만약 A형의 부품의 재고가 20개 이하이면, 부품 부족을 예방하기 위해 A형의 부품을 주문해야 한다.

데이터: A형의 부품이 17개 남아 있다.

위의 지식과 데이터가 결합되면, A형 부품을 3개 이상 주문해야 한다는 정보가 생성된다. 

(사례 2)

지식: 만약 비가 내리고, 당신이 비를 맞기 싫어한다면, 외출하기 전에 우산을 챙겨야 한다.

데이터: 비가 내리고 있다.

정보: 위 지식과 데이터가 결합되면, 우산을 챙기라는 정보가 생산된다.

 KBI를 자율주행 자동차에 적용해 보면, 우선 자동차는 교통데이터, 도로데이터, 기후데이터, 사건데이터 등을 처리할 수 있는 데이터분석 모형이 필요할 것이다. 그리고 도로 상황, 교통 상황, 기후 상황, 사건 상황에 관한 데이터를 실시간으로 받을 수 있는 센서(sensor)나 네트워크이 필요할 것이다. 데이터 분석 모형은 지식 프레임워크에 해당되고, 센서에서 입력되는 신호는 데이터이다. 데이터 분석 모형이 센서 데이터를 받으면 실시간으로 액츄에이터(actuator)가 행동할 수 있는 정보를 생산할 것이다. 그 기능을 모두 갖춘 AI가 자동차에 내장되면 자율주행 자동차가 만들어 질 것이다.   

참고문헌: Kettinger, William J and Yuan Li (2010). “The infological equation extended: towards conceptual clarity in the relationship between data, information and knowledge,” European Journal of Information Systems, 19(4): 409-421.