두 모평균의 비교(1): 두 표준편차를 알고 있는 경우

현실에서 우리는 자주 두 모집단을 비교한다. 예컨대 우리는 두 반이나 두 학교의 모의고사  성적을 비교한다. 그럴 때 우리는 두 모집단의 성적 평균을 산출하여 비교하거나 두 모집단에서 표본을 추출하여 표본평균을 구하고 그것을 비교하여 모집단 성적 평균을 추정 한다.

두 모집단의 평균 비교는 앞에서 설명한 한 모평균의 구간 추정과 가설 검정의 첫 번째 확장이라고 볼 수 있다. 그렇다면, 두 모집단의 평균 비교에서, 1) 영가설에서 도출된 모수는 무엇인지, 2) 그 모수의 확률분포는 어떤 모습인지, 만약 그것이 t-분포를 이룬다면 자유도는 어떻게 구할 것인지, 3) 모표준편차를 모를 경우 표준오차를 어떻게 추정할 것인지, 4) 검정통계치를 어떻게 계산할 것인지, 5) 신뢰구간이나 가설 검정에 대한 최종 판단은 어떻게 할 것인지를 차근차근 알아보면 될 것이다.

다만 모집단이 두 개이기 때문에 발생하는 변이가 있다. 두 모집단의 평균을 비교할 때 대개의 경우 두 모집단은 서로 별개(독립적)로 존재한다. 그런데 두 모집단이 특별한 관계를 갖고 있는 경우도 있다. 모집단의 구성원은 동일한 데 그 구성원들이 두 가지 다른 행동이나 과업을 수행하여 마치 두 개의 모집단처럼 간주되는 경우가 바로 그것이다. 이 경우 표준오차를 어떻게 처리할 것인지에 대한 설명이 추가로 필요하다.

상호 독립적인 두 개의 모집단의 평균 비교: 두 모집단의 표준편차()를 알고 있는 경우

두 모집단의 평균은 통상 아래와 같이 그 차이를 가지고 비교될 수 있다.

이 차이가 추정되는 모집단 목표이다. 그것에 대한 합리적인 추정값은 아래 식에 표시된 것처럼각 모집단으로 부터 추출된 표본으로부터 구한 평균의 차이가 될 것이다.

우리가 알고 있는 단일 모평균의 신뢰구간을 구하는 공식을 응용하면 식 (2)를 가지고 식(1)의 신뢰구간을 아래와 같이 추정할 수 있다.  우리가 알고 있는 단일 모평균의 신뢰구간을 구하는 공식은 아래와 같다.

공식 (3)에서 은 표준오차(평균의 확률분포의 표준편차)이다. 공식 (3)을 이용해서 식 (2)로부터 식(1)을 추정하는 공식은 다음과 같이 쓸 수 있을 것이다.

표준오차가 에서 로 바뀌었다.두 모집단의 평균 비교를 위한 표준오차는 다음과 같이 구해진다.

는, 두 모집단이 독립적이라고 가정되었음으로  당연히 두 표본은 서로 독립적이고, 따라서 독립적인 두 확률변수의 선형결합이다. 따라서 그것의 분산(variance)은 아래와 같이 계산된다.

두 평균 차이의 분산은 각 평균 분산을 합한 값이다. 그런데 이므로  식 (5)는 아래와 같이 표시된다.

따라서,

즉, 평균 차이의 표준오차는 두 모집단 분산의 합을 양의 제곱근한 값이다.  이제 식 (6)을 공식 (4)에 대입하면 두 모집단 평균 차이에 대한 신뢰구간 공식이 구해진다.

두 모집단이 정규분포이거나 중심극한정리를 적용할 수 있을 만큼 표본의 크기ㅏ가 커서 의 표집분포가 정규근사 한다면 의 표집분포는 평균이 인 정규분포가 될 것이다.

공식을 구했으니, 예제를 풀어보자.

(예제) 홈스타일(HomeStyle)은 도심과 교외 쇼핑센터의 두 매장에서 가구를 판매하고 있다. 매장 관리자는 이 두 매장의 판매 패턴 차이가 두 지역의 인구통계학적 차이에 기인한다고 생각하였다. 그래서 두 매창 고객들의 평균 나이 차이에 대해 조사하라고 지시하였다. 이전에 실시한 인구통계조사를 통하여 두 모집단 표준편차가 임을 알고 있다. 도심 매장에서 추출한 표본의 크기는 36이고 평균은 40이며, 교외 매장에서 추출한 표본의 크기는 49이고 평균은 35이다. 두 매장의 쇼핑객 평균 나이의 차이에 대한 95% 신뢰구간을 구하시오.

(풀이) 모집단 1은 도심 매장 쇼핑객, 모집단 2는 교외 쇼핑객 이라고 하자.

= 모집단 1의 평균(도심 매장 쇼핑객의 평균 나이)

= 모집단 2의 평균(교외 매장 쇼핑객의 평균 나이)

이 데이터를 공식 (7)에 대입하면,

이므로 식 (8)은 아래와 같이 정리된다.

표본평균 차이는 5이고, 표준오차는 2.07이고,  오차범위가 4.06이다. 따라서 두 모집단 평균차이의 95% 신뢰구간 추정값은 0.94(살)에서 9.06(살)까지이다.

두 모집단 평균차이에 대한 가설검정을 알아보자. 단일 모평균에 대한 가설을 검정할 때, 표본평균에서 영가설로부터 도출된 모평균을 뺀 값이 표준오차의 몇 배인가를 보여주는 표본통계치 z나 t값을 구해서(식 (9) 참조) 그것의 p-값을 구하고, p-값과 유의수준을 비교하여 영가설에 대해 판단하였다.

두 모집단의 평균차이의 경우 가설검정은 신뢰구간 추정보다 다소 복잡하다. 우선 설명을 간명하게 하기 위해 라고하자. 그렇다면 세 가지 경우가 나올 것이다. 먼저 두 모집단의 평균이 같다는 영가설과 두모집단의 평균이 다르다는 대립가설을 설정할 수 있다. 양측 검정의 경우가 될 것이다.영가설이 기각되면 두 모집단의 평균 차이가 통계적으로 유의미하다고 판단된다.

다음에는 모집단 1의 평균이 모집단 2의 평균보다 같거나 크다는 영가설을 설정할 수 있다. 그러면 대립가설은 모집단 1의 평균이 모집단2의 평균보다 작다가 될 것이다.

끝으로 모집단 1의 평균이 모집단 2의평균보다 같거나 작다는 영가설을 설정할 수 있다. 그러면 대립가설은 모집단 1의 평균이 모집단 2의 평균보다 크다가 될 것이다.

위의 식 (9)를 원용하여  에 대한 가설검정에서의 검정통계치를 계산하는 공식이 아래와 같이 도출된다(두 모집단의 표준편차가 알려져 있는 경우).

표본통계치 값을 구하면 p-값이 산출된다.

위의 홈스타일 가구의 두 매장 사례를 가지고 가설 추정을 해보자. 만약 두 매장의 쇼핑객 평균 나이에 차이가 있는지를 알아본다면, “두 매장 쇼핑객 평균 나이가 다르다”를 대립가설로 두고, “두 매장 쇼핑객 평균 나이가 같다”를 영가설로 두는 양측 검정이 될 것이다.

우리가 가진 정보는 아래와 같다.

이 정보를 공식 (10)에 대입하여 표본통계치를 구한다.

z-값이 양수이므로 오른쪽 단측검정을 하면, p-값 = 0.008이다. 양측검정을 위해 이를 두 배하면 0.016이다. 이 값은 유의수준 0.05(95% 신뢰수준)보다 작다. 따라서 두 모집단의 평균이 같다는 영가설은 기각되고, 두 매장 쇼핑객의 평균 나이가 다르다고 결론을 내릴 수 있다. (2019-10-19)