(Bayes 학습)(8)대학에서 성공적으로 공부하려면….

앞 포스팅에서 학습한 마르코프 연쇄의 정상 상태를 현실 문제에 적용해 보자.

대학 신입생들은 대체로 두 가지 이유로 전공을 선택한다. 평소의 관심 혹은 수능 성적이다.

대학 입학 후 첫 학기가 끝났을 때 신입생들의 전공 관심 정도는 어떻게 될까? 어떤 요인이 주로 영향을 미칠까?

먼저 대학에 들어올 때의 전공 관심 정도와 처음 듣는 전공 과목 담당 교수의 교수 능력의 영향을 살펴보자. 학원 배치표에 따라 전공을 선택하는 학생들이 많은 우리 나라의 현실을 볼 때 학과 신입생들이 지닌 전공 관심의 비율은   정도가 되지 않을까? 전공에 관심을 가진 학생이 20%, 그렇지 않은 학생이 80%.

그런데 첫 전공 수업에서 교수 능력이 뛰어난 교수를 만났을 경우 전공수업의 효과는 다음과 같은 행렬로 나타낼 수 있을 것이다.

즉, 전공에 대해 관심 있는 학생이 수업을 듣고 전공에 대해 더욱 관심을 갖게 될 학률이 0.8, 전공에 대해 관심 있는 학생이 실망하여 전공에 대한 관심을 잃을 확률이 0.2, 그리고 전공에 대해 관심이 없는 학생이 전공에 관심을 가질 확률이 0.6, 전공에 대해 관심이 없는 학생이 계속 전공에 관심이 없을 확률이 0.4. 그 정도면 아주 잘 가르치는 교수(교수 1이라고 하자)가 아닐까?

반면에  수업을 잘 지도하지 못하는 교수(교수 2라고 하자)가 첫 전공 수업을 가르쳤을 경우, 그 추이행렬은,

 정도가 되지 않을까?

교수 1과 교수 2가 첫 전공 수업을 가르친 후 얼마 지나면 정상 상태(steady state)에 도달할 것이다. 지난 포스팅에서 나온 공식 를 이용해서 정상 행렬을 구해보면, 교수 1의 정상 행렬은 가 될 것이고, 교수 2의 정상 행렬은 이 될 것이다. 교수 1의 수업을 들은 학생들의 경우 75%가 전공에 대해 관심을 갖게 되고, 교수 2의 수업을 들은 학생들은  33%가 전공에 대해 관심을 갖게 될 것으로 예상된다. 교수의 영향이 무척 크다. 그리고 흥미 있게도 대학에 들어오면서 신입생들이 얼마나 전공에 관심에 가지고 있는가는 정상 상태에 영향을 미치지 못한다.

학생들 자신의 태도도 중요한 결정요인일 수 있을 것이다. 어떤 연유로 학과를 선택했든, 개방적인 자세를 가진 학생들은 첫 전공 수업을 듣고 전공에 관심을 갖게 될 것이고, 비개방적인 자세를 가진 학생들은 첫 전공 수업을 듣고도 전공에 관심을 갖지 않을 것이다. 그러한 학생들의 자세는 전공에 대한 관심 수준을 결정하는데 얼마나 영향을 미칠까?

전공에 대한 학생들의 개방적 태도를 추이행렬로 다음과 같이 표현해 볼 수 있지 않을까?

, , ,

첫번째 추이행렬은 아주 비개방적인 태도를 지닌 학생의 경우로, 수업을 듣고 전공에 대해 무관심에서 관심으로 전환될 확률이 10%밖에 되지 않는다. 두번째 추이행렬은 그 전환 가능성이 20%, 세번째 추이행렬은 40%, 그 다음은 60%, 마지막은 전환 가능성이 80%이다. 아래 행(row)의 숫자가 커질수록 점점 개방적이 됨을 의미한다. 마지막 두 추이행렬은 아주 개방적인 학생들일 것이다.

그런데 이 추이행렬을 가진 학생들이 동일한 교수의 전공수업을 수강했다고 가정하고 그들의 정상행렬을 계산해 보면 각각 다음과 같다.

,

입학 초기에 전공에 대한 관심이 어떤 상태인가에 관계없이, 전공에 대해 개방적인 태도를 지닌 학생의 전공에 대한 관심 비율(학문에 대한 관심 중 전공에 대한 관심이 차지하는 비율: 전공 대 비전공으로만 단순화시켜서 표현함)이 최대 80%나 되며, 전공에 대해 비개방적인 태도를 지닌 학생의 전공에 대해 관심 비율은 33%에 불과하다.

전공에 대한 관심은 전공 성적과 높은 상관관계를 갖고 있다. 다시 말해 신입생이 전공에 대해 얼마나 개방적인 태도를 갖고 있는가가 결국 전공에서의 학업성취에 커다란 영향을 미칠 것으로 추정된다.

물론 앞에서 살펴본 것처럼 전공 첫 수업을 어떤 교수가 가르치는가도 중요한 결정요인일 것이다. 여기서 교수 사례는 분석단위가 학과이고, 학생 사례는 분석단위가 개별 학생이다. 이점 때문에 다소 혼란스러울 수 있을 것이다.

이 예상들은 실증적인 조사 자료 없이 마르코프 연쇄 모형을 이용하여 수학적으로 도출되었다. 실제 조사를 해보면 예상과 많이 다를까? 사회과학적 추론에 있어 마르코프 연쇄의 잠재성이 아주 커보인다.

댓글 남기기

이메일은 공개되지 않습니다. 필수 입력창은 * 로 표시되어 있습니다

이 사이트는 스팸을 줄이는 아키스밋을 사용합니다. 댓글이 어떻게 처리되는지 알아보십시오.