(Bayes 학습)(7)마르코프 연쇄-(2)

광고 후 3주일째 Brand A의 오렌지 쥬스 시장의 점유율은 어떻게 될까? 아래 식에서 보는 것처럼 86.96%이다.

시장 점유율이 여전히 증가하고 있으나 첫 두 주만큼 인상적이지는 않다. 광고효과가 동일하다고 가정하면 광고 후 4주부터 10주째까지 Brand A의 오렌지 쥬스 시장의 점유율은 각각 아래와 같이 예상된다.

Brand A의 시장점유율은 광고 후 5주차에 87.50%(반올림한 결과)에 도달한 이후 10주차까지 미세한 증가가 있으나 반올림하면 여전히 87.50%이다! 즉, Brand A의 시장점유율은 광고 후 5주차에 거의 불변상태에 도달할 것으로 예상된다(이는 대단히 흥미 있는 현상이다). 따라서 Brand A의 시장점유율은 광고 후 초반의 급속한 증가에도 불구하고 그 증가 속도가 빠르게 감소되되기 때문에 결코 100%에 도달하지 못할 것으로 판단된다.

이 사례는 마르코프 연쇄에 있어 정상 상태(steady state, stationary state, invariant state)가 존재함을 보여준다. 마르코프 연쇄에서 정상 상태에 도달하는 과정을 정상 상태에 수렴한다(convergence)고 표현한다.

그렇다면 모든 마르코프 연쇄가 정상 상태의 특성을 갖고 있는가? 그것은 아니다. 추이행렬(transition matrix)이 정칙(regular)인 마르코프 연쇄(그것을 정칙 마르코프 연쇄, regular Markov chains라고 부른다) 같이 특정한 유형의 마르코프 연쇄만이 그러한 속성을 갖고 있다. 어떤 추이행렬의 거듭제곱한 결과가 오직 양의 원소(only positive entries)만을 지닌 행렬일 때 그 추이행렬은 정칙이다.

정칙 마르코프 연쇄는 다음과 같은 속성을 갖는다.

(1)   (는 정상 행렬, 는 추이행렬)   이 공식으로 정상 행렬(stationary matrix)을 구할 수 있다.

(2) 초기 행렬  에 어떤 값이 주어지든 상태 행렬들(state matrices) 는 정상 행렬 에 수렴된다.

(3)추이행렬의 거듭제곱  는 하나의 극한 행렬(limiting matrix) 에 수렴한다. 의 각 행(row)은 정상 행렬 와 같다.

 공식을 이용해서 위 광고의 정상 행렬을 구해보자.

이 식을 과 에 관해서 풀면 다음 두 식을 얻는다.

 —–(1)

 —–(2)

그리고  —–(3)

(1)식과 (2)식 중 하나와 (3)식을 가지면 과 를 구할 수 있다. (1)과 (3)을 가지고 풀자.

(3)의 양변에서 를 빼면, 

이 것을 (1)에 대입하면,

양변에서 를 더하고 0.9를 우변으로 옮기면,

양변을 0.8로 나누면,

 이 된다. 이 값을 (3)에 대입하면, 이 구해진다. 이 값들로 행렬을 구하면,  이다. 이를 소수로 전환하면 이다.

위에서 일일히 행렬 계산을 통해서 구했던 정상 행렬이 공식을 사용해서 훨씬 쉽게 구해졌다.

정상 행렬(stationary matrix). 정상 상태(stationary state), 정상 분포(stationary distribution)은 베이즈 추론 과정의 MCMC (Markov Chain Monte Carlo) 시뮬레이션에 적용된다. 다음 글에서 마르코프 연쇄에 대해 조금만 더 알아보자.

댓글 남기기

이메일은 공개되지 않습니다. 필수 입력창은 * 로 표시되어 있습니다

이 사이트는 스팸을 줄이는 아키스밋을 사용합니다. 댓글이 어떻게 처리되는지 알아보십시오.