지능이라는 이름의 게임(5): 두뇌의 구조

필자가 지능과 두뇌에 대해 관심을 갖는 것은 지금 그것들을 중심으로 경천동지할 변화가 일어날 조짐을 보이고 있기 때문이다. 오래 전 두뇌에 대뇌와 대뇌 신피질(cerebral neocortex)을 지닌 생물체가 출현하면서 생물체의 지능이 획기적으로 향상되었듯이, 앞으로 일어날 인간 두뇌의 급진적 변화–이미 그 변화가 시작되었다–로 인해 지금까지와는 완전히 다른 지능을 지닌 존재가 출현할 것으로 예상된다. 머신 러닝과 A.I.의 발전에서 그 조짐이 확인된다.

더 이상 지능과 두뇌를 신경과학자, 심리학자, 생물학자, 컴퓨터 과학자, 혹은 인류학자들의 손에만 맡겨둘 수 없다는 판단이다. 이미 꽤 오래 전부터 참여를 시작한 경영학자나 경제학자는 물론이고, 정치학자, 사회학자, 미래학자, 법학자, 또는 행정학자들도 지능과 두뇌에 관한 담론에 적극 참여해야 한다. 지능과 두뇌에 관한 오늘날의 발전은 100여 전 우생학과는 비교할 수 없는 규모와 방식으로–훨씬 근본적이며 광범위하게–개인과 사회에 영향을 미칠 것이기 때문이다.

지능의 관점에서 두뇌를 잠시 살펴보자. 우선 두뇌를 전체적으로 놓고 보면, 지능과 관련된 부위는 뇌의 최상부–대뇌(cerebrum)–를 약 90% 정도 덮고 있는 신피질(neocortex)–‘새겉질’이라고도 불림–로 알려져 있다. 신피질은 식탁용 냅킨 정도의 크기, 그리고 명함 여섯장을 합쳐놓은 두께(약 2mm)이며, 약 300억개(1천억개라고 추정하는 학자도 있음)의 신경세포(neurons)로 이루어져 있다(Hawkins, 2004).

인간의 뇌는 놀랍도록 조밀하게 연결된 신경세포 네트워크일 뿐 아니라 유연성이 큰 신경세포 집합이기 때문에 뇌의 특정 부위가 특정 기능을 수행한다고 단정하는 것은 원칙적으로 바람직하게 생각되지 않는다. 이 원칙은 여기서 논의하는 지능에도 해당된다.

예컨대 지능의 구현에서 중요한 기억(memory) 기능은 신피질 뿐 아니라 해마(hippocampus)에 의해서도 수행한다[Hawkins(2004)는, 해마가 신피질에서 해석되지 못한, 새로운 자극을 저장하는 것으로 추정한다]. 이대열(2017)은, 해마에는 서술적 기억(declarative memory: 다른 사람에게 언어를 이용해서 설명해 줄 수 있는 기억)이 형성되고, 절차적 기억(procedural memory: 동작 순서에 대한 기억)은 기저핵(basal ganglia)에 형성되는 것으로 추정한다. 시상(thalamus)의 경우도 마찬가지이다. Eagleman(2015)에 의하면, 시상에는 수많은 시각  피질(visual cortex)이 연결되어 있으며, 외부에서 들어온 시각 정보와 대뇌에 있는 내부 모형(internal model)을 비교하여 발견되는 차이를 대뇌에 알리는 기능을 담당한다고 지적한다.


Related image

신피질의 지능 작용–분류, 기억, 예측, 비교, 이해, 상상 등–은 신경세포 네트워크(neural networks)를 통해서 이루어진다. 신경세포(neurons)는 전기-화학적(electro-chemical) 반응을 통해서 정보를 전달, 저장, 복원, 혹은 업데이트한다.  자극을 받으면 신경세포는 시냅스(synapse)를 통해서 다른 신경세포들과 연결되어 하나의 네트워크 구조를 형성한다. 신경세포 하나가 할 수 있는 일은 거의 없다.

신경세포는 세포체(soma)와 세포핵(nucleus), 세포체에 붙은 나뭇가지 모양의 수상돌기(dendrite), 축삭(axon)이라는 신경 섬유, 그리고 축삭종말(axon terminal)로 이루어져 있다. 이 중 세포핵은 다른 세포의 세포핵처럼 RNA의 생성과 같은 세포의 생명유지 기능을 담당한다. 수상돌기는 신경세포의 일종의 정보 접수 창구이다. 수상돌기는 이웃 신경세포로부터 화학적 신호를 받거나 감각기관으로부터 물리적 자극을 받으면, 세포체와 함께 활동 전압(action potential)을 생성한다. 이 전기적 신호는 축삭을 통해서 축삭 종말에 전달된다. 축삭 종말은 신경전달물질(neurotransmitter)을 분비해서 그 전기적 신호를 화학적 신호로 바꾼다. 그 신경전달물질은 축삭종말과 인접 신경세포의  수상돌기 사이에 존재하는 시냅스를 통해서 전달된다. 이 시냅스 연결이 강화되거나 약화되면서 하나의 신경세포 네트워크로서의 새로운 기억이 형성되고, 기존의 기억이 재구성되거나 소실된다.

Related image

Image result for 시냅스

Hawkins에 의하면, 대뇌 신피질의 각 영역(region)은 계층(layer)과 기둥(column)으로 이루어져 있다. 대부분의 신경세포들은 여섯 개의 층(layers)으로 이루어져 있으며, 각 계층은 서로 다른 역할을 맡고 있다(아래 그림 참조).

Related image
출전: thebrain.mcgill.ca. 항목 The Retina.
Cerebral cortex layers microanatomy
신경과학에서 Afferent는 들어오는 신경, efferent는 나가는 신경을 말함. 출전: 표는 Epomedicine.com에서 가져왔음.

위 표에서 보듯이 계층 1의 경우 자체의 신경세포는 소수에 불과하고 하위 계층의 신경세포의 수상돌기들로 채워져 있다. 이는 계층 1이 여러가지 정보를 결합하는 기능을 하고 있음을 추정하게 한다. 계층 4는 시상(thalamus)으로부터 정보를 받아서 다른 계층들이나 기둥들에게 전달하는 역할을 하고, 계층 6는 뇌간으로부터 정보를 받거나 시상으로 정보를 내보낸다. 계층2은 신피질의 다른 영역으로부터 정보를 받으며, 계층3은 외부로부터 정보를 받거나 내보내고, 계층5는 동작 운동(motor movements)을 일으키는데 관여하는 것으로 알려졌다. 기둥들이 하는 역할에 관해서는 잘 밝혀져 있지 않다. 다만 Hawkins는, 기둥 구조가 인식 대상의 정보가 여러 계층 사이를 효율적으로 전달되게 하며, 특히 여러 개의 기둥들이 병렬로 작동하여 대상에 대한 신속한 인식과 판단을 가능하게 해주지 않나 추정한다(Hawkins, Ahmad, and Cui, 2017).

두뇌 구조에 관한 소개는 이 정도로 마치고 이제 다음 네 편의 저술에 제시된 해석을 따라 가면서 지능과 두뇌의 관계에 대해 보다 깊이 생각해 보겠다.

  1. <지능의 탄생>(이대열. 2017): 진화생물학 및 행동심리학적 접근
  2. <On Intelligence>(Hawkins, 2004): 지능 기계(intelligence machine) 설계자의 관점
  3. <The Brain>(Eaglman, 2015): 인지 신경과학(cognitive neuroscience)(심리학+신경과학)적 접근
  4. “Imitating the Brain with Neurocomputer”(Huang, 2017): 신경컴퓨터(neurocomputer) 연구자의 관점

<참고 문헌>

이대열. 2017. <지능의 탄생>. 바다출판사.

Eagleman, David. 2015. The Brain. Pantheon Books.

Hawkins, Jeff. 2004. On Intelligence. Times Books.

Hawkins, Jeff, Subutai Ahmad, and Yuwie Cui. 2017. “Why Does the Neocortex Have Columns, A Theory of Learning the Structure of the World.”

 https://www.biorxiv.org/content/biorxiv/early/2017/09/28/162263.full.pdf

(윤영민, 2018-02-24)

댓글 남기기

이메일은 공개되지 않습니다. 필수 입력창은 * 로 표시되어 있습니다

This site uses Akismet to reduce spam. Learn how your comment data is processed.