지능이라는 이름의 게임(6): 두뇌-지능의 수수께끼를 풀어라!

세계 신경과학회(Society for Neuroscience)에는 3만8천명 이상의 회원이 가입되어 있으며 2017년 11월 미국 워싱턴 D.C.에서 개최된 신경과학 연례 컨퍼런스에는 3만명 이상의 학자와 전문가들이 참석하였다. 그 중에는 뇌와 신경 분야의 질병과 치료를 전공하는 의사들도 포함되어 있지만 참가자 대부분이 두뇌를 연구하는 학자들이라고 보면 될 것이다. 다시 말해  전세계적으로 수만 명의 학자와 전문가들이 인간 두뇌에 관심을 갖고 있다는 말이다. 덕분에 두뇌-지능(brain-intelligence)에 관해서 필자와 같은 비전공자가 따라잡기 불가능할 정도로 깊이 있고 다양한 연구가 발표되고 있다.

신경과학 연구의 핵심은 인간의 행동(혹은 의식)과 두뇌 구조 사이의 관계이다. 하지만 연구자에 따라 연구의 관점과 촛점이 크게 다르다. 어떤 연구자는 진화생물학적인 관점에서 접근하고, 어떤 연구자는 행동심리학적 관점에서 접근하며, 어떤 연구자는 두뇌의 기능적 측면에 관심이 있고, 어떤 연구자는 두뇌의 구조적 측면에 관심이 많다. 그런데 연구 성과들이 거의 대부분 뇌의 특정 영역이나 특정 기능을 다루고 있어, 필자와 같은 외부자들이 이해하기 쉽고, 두뇌-지능을 전체적으로 바라보게 해주며, 나아가 독창적인 이론적 관점을 담고 있는 논문이나 저서가 흔치 않다.

다행히 그런 저작 몇 편을 찾았다. 함께 그것들을 리뷰하면서 지능-두뇌를 이해해 보자. 먼저 예일대 신경과학과에 재직 중인 이대열 교수의 최근 저서, <지능의 탄생>(2017, 바다출판사)이다.

Image result for 지능의 탄생

이 교수는 지능을 생존을 위한 의사결정(decision making)으로 본다. 생물체의 진화는 지능(intelligence)의 진화를 수반한다. 생명의 핵심은 유전자의 자기복제인데, 유전자는 RNA에서 시작하여 DNA와 단백질로 분화하고, 단세포 생물체에서 다세포 생물체로, 식물에서 동물로, 곤충에서 파충류, 그리고 인간이 속한 포유동물에까지 진화한다. 각 생물체는 자신의 생존에 적합한 지능을 갖고 있다. 단순한 생명체는 낮은 지능만을 갖고 고등 동물은 높은 수준의 지능을 갖는다. 특히 날쌔게 움직여야 살아남을 수 있는 동물들에게는 신경세포가 모인 두뇌(brain)가 발생하였고, 예측과 판단을 위한 대뇌 신피질(cerebral neocortex)이 발생하였다. 특히 복잡한 사회생활을 해야하는 인간은 다른 동물에 비해 크고 복잡한 구조의 신피질을 갖게 되었다.

그런데 인간의 신피질은 세상에 태어나는 순간에 완성체로 출현하는 것이 아니라 성장 하면서 발달하고 살아가면서 변화된다. 의사결정에는 기억, 분류, 개념화, 비교, 예측, 그리고 학습이 필요하다. 감각기관을 통해서 외부의 자극을 받으면 신피질, 해마, 기저 핵 등에 신경세포-시냅스 네트워크가 형성되고, 일종의 학습 과정을 통해서 기억은 강화되거나 약화되고 혹은 소실된다.

지능은 기억을 가지고 하는 생존 게임이다. 유전자는 효과적인 생존을 위해 두뇌에게 자율성을 부여한다. 그래서 두뇌는 스스로 판단에 의해 생존–유전자의 자기복제–에 가장 유리한 행동을 선택해야 한다. 경험을 통해서 환경에 관한 정보를 인지하고 분류해서 저장해두고(기억), 특정 상황에서 취한 행동과 그것의 결과(보상, reward) 사이의 관계를 기억한다. 그리고는 새로운 자극이 들어오면 관련된 기억을 활성화하여 여러 가지 행동 옵션을 비교하여 선택한다.

Image result for reinforcement of memory in brain
출전: http://www.sashasheng.com/blog/2018-1-6-reinforcement-learning-taxonomy

경쟁하는 욕구들 혹은 가능한 행동들 사이에서 의사결정을 하려면, 다양한 옵션들의 예상 효과를 공통의 보상 척도로 측정할 수 있어야 하며, 각 옵션이 가져오는 당장의 영향 뿐 아니라 미래의 영향에 대해서도 그 값을 추정할 수 있어야 한다. 그 값들을 비교하여 두뇌–보다 구체적으로 대뇌 신피질–는, 항상 성공적인 결과가 보장되지는 않지만, 신속한 의사결정을 내린다.

이러한 과정이 학습(learning)이고 지능 작용인데, 거기에서 중요한 요소가 오류(error)와 가치(혹은 효용)이다. 두뇌는 저장된 과거 기억을 활용해서 행동이 가져올 가치(value)를 예견하고 행동을 명령한다. 행동한 이후에 생성된 가치가 예견된 가치보다 작거나 크면 보상 예측 오류(reward prediction errors)가 발생한다. 보상예측오류는 학습이 필요하다는 시그널이다. 두뇌가 행동의 가치값을 변화시킨다는 것이다. 그것이 학습이다.

Image result for reward prediction errors
출전: https://www.dialogues-cns.org/contents-18-1/dialoguesclinneurosci-18-23/

도파민(dopamine)은 보상예측오류를 반영하는 신경화학물질이다. 예상보다 결과가 좋으면 도파민 분비가 증가되어 다음 번에는 예측값을 높이도록 유도하고, 반대로 예상보다 결과가 좋지 않으면 도파민 분비가 감소되어 다음 번에는 예측값을 낮추도록 유도한다.

두뇌의 보상 예측 오류는 안도(relief)/후회(regret), 득의(elation)/실망과 같은 정서적 상태를 수반한다. 그러한 정서 상태는 두뇌가 기억을 강화할 것인지 갱신할 것인지를 결정하는 필요한 요소인지도 모른다. 이는 후회나 실망과 같은 부정적인 정서도 지능과정에 긍정적 역할을 수행함을 함축한다.

Related image
출전: www.planbox.com. https://www.planbox.com/2017/07/07/innovation-evolution-ai/

끝으로 생존을 위한 의사결정이라는 관점에서 보면 최고의 지능은 무엇보다 자율성을 지녀야 한다. 스스로 복제(reproduction)를 추구할 수 있어야 하고, 자기 복제(self-reproduction)를 위해 미래에 대비하거나 효과적인 의사결정을 내릴 수 있어야 한다. 인공지능(artificial intelligence)도 자기 복제 능력을 가질 수 있을까? 혹은 인공지능에게 자기 복제 능력을 허용해야 할 것인가? 이 교수는 언젠가 인공지능이 자기 복제 능력을 가질 정도로 테크놀로지가 발전하겠지만, 인공지능에게 자율성을 허용해서는 안 될 것이라고 주장한다. 인간과 인공지능 사이에 본인-대리인 문제(principal-agent problem)가 필연적으로 발생할 것이기 때문이다. 인간(본인)의 생존과 번영을 위해 존재해야 하는 인공지능(대리인)이 인간의 이익보다 자신의 이익을 우선시할 가능성이 있고, 그럴 경우 인공지능에 의해 인간의 생존이 위협받는 결과가 초래될 수도 있다는 것이다. (윤영민, 2018-02-25).

댓글 남기기

이메일은 공개되지 않습니다. 필수 입력창은 * 로 표시되어 있습니다